Publications
Export 2265 results:
Author Title [ Year
Filters: First Letter Of Last Name is S [Clear All Filters]
Somatic SLC35A2 variants in the brain are associated with intractable neocortical epilepsy. Ann Neurol 83, 1133-1146 (2018).
Somatic SLC35A2 variants in the brain are associated with intractable neocortical epilepsy. Ann Neurol 83, 1133-1146 (2018).
Somatic SLC35A2 variants in the brain are associated with intractable neocortical epilepsy. Ann Neurol 83, 1133-1146 (2018).
STRetch: detecting and discovering pathogenic short tandem repeat expansions. Genome Biol 19, 121 (2018).
Truncating Variants in NAA15 Are Associated with Variable Levels of Intellectual Disability, Autism Spectrum Disorder, and Congenital Anomalies. Am J Hum Genet 102, 985-994 (2018).
Truncating Variants in NAA15 Are Associated with Variable Levels of Intellectual Disability, Autism Spectrum Disorder, and Congenital Anomalies. Am J Hum Genet 102, 985-994 (2018).
Truncating Variants in NAA15 Are Associated with Variable Levels of Intellectual Disability, Autism Spectrum Disorder, and Congenital Anomalies. Am J Hum Genet 102, 985-994 (2018).
Truncating Variants in NAA15 Are Associated with Variable Levels of Intellectual Disability, Autism Spectrum Disorder, and Congenital Anomalies. Am J Hum Genet 102, 985-994 (2018).
Truncating Variants in NAA15 Are Associated with Variable Levels of Intellectual Disability, Autism Spectrum Disorder, and Congenital Anomalies. Am J Hum Genet 102, 985-994 (2018).
Truncating Variants in NAA15 Are Associated with Variable Levels of Intellectual Disability, Autism Spectrum Disorder, and Congenital Anomalies. Am J Hum Genet 102, 985-994 (2018).
Tuberculosis and impaired IL-23-dependent IFN-γ immunity in humans homozygous for a common missense variant. Sci Immunol 3, (2018).
Tuberculosis and impaired IL-23-dependent IFN-γ immunity in humans homozygous for a common missense variant. Sci Immunol 3, (2018).
Tuberculosis and impaired IL-23-dependent IFN-γ immunity in humans homozygous for a common missense variant. Sci Immunol 3, (2018).
Tuberculosis and impaired IL-23-dependent IFN-γ immunity in humans homozygous for a common missense variant. Sci Immunol 3, (2018).
A variant in LMX1A causes autosomal recessive severe-to-profound hearing impairment. Hum Genet 137, 471-478 (2018).
Variants in EXOSC9 Disrupt the RNA Exosome and Result in Cerebellar Atrophy with Spinal Motor Neuronopathy. Am J Hum Genet 102, 858-873 (2018).
Variants in EXOSC9 Disrupt the RNA Exosome and Result in Cerebellar Atrophy with Spinal Motor Neuronopathy. Am J Hum Genet 102, 858-873 (2018).
Whole exome sequencing analysis in severe chronic obstructive pulmonary disease. Hum Mol Genet 27, 3801-3812 (2018).
Whole exome sequencing analysis in severe chronic obstructive pulmonary disease. Hum Mol Genet 27, 3801-3812 (2018).
Whole exome sequencing analysis in severe chronic obstructive pulmonary disease. Hum Mol Genet 27, 3801-3812 (2018).
Whole exome sequencing frequently detects a monogenic cause in early onset nephrolithiasis and nephrocalcinosis. Kidney Int 93, 204-213 (2018).
Whole exome sequencing frequently detects a monogenic cause in early onset nephrolithiasis and nephrocalcinosis. Kidney Int 93, 204-213 (2018).
Whole exome sequencing frequently detects a monogenic cause in early onset nephrolithiasis and nephrocalcinosis. Kidney Int 93, 204-213 (2018).
Whole exome sequencing frequently detects a monogenic cause in early onset nephrolithiasis and nephrocalcinosis. Kidney Int 93, 204-213 (2018).
Whole exome sequencing frequently detects a monogenic cause in early onset nephrolithiasis and nephrocalcinosis. Kidney Int 93, 204-213 (2018).
Whole exome sequencing frequently detects a monogenic cause in early onset nephrolithiasis and nephrocalcinosis. Kidney Int 93, 204-213 (2018).
Whole exome sequencing frequently detects a monogenic cause in early onset nephrolithiasis and nephrocalcinosis. Kidney Int 93, 204-213 (2018).
Whole Exome Sequencing of Patients with Steroid-Resistant Nephrotic Syndrome. Clin J Am Soc Nephrol 13, 53-62 (2018).
Whole Exome Sequencing of Patients with Steroid-Resistant Nephrotic Syndrome. Clin J Am Soc Nephrol 13, 53-62 (2018).
Whole Exome Sequencing of Patients with Steroid-Resistant Nephrotic Syndrome. Clin J Am Soc Nephrol 13, 53-62 (2018).
Whole Exome Sequencing of Patients with Steroid-Resistant Nephrotic Syndrome. Clin J Am Soc Nephrol 13, 53-62 (2018).
Whole Exome Sequencing of Patients with Steroid-Resistant Nephrotic Syndrome. Clin J Am Soc Nephrol 13, 53-62 (2018).
Whole Exome Sequencing of Patients with Steroid-Resistant Nephrotic Syndrome. Clin J Am Soc Nephrol 13, 53-62 (2018).
Whole Exome Sequencing of Patients with Steroid-Resistant Nephrotic Syndrome. Clin J Am Soc Nephrol 13, 53-62 (2018).
Whole Exome Sequencing of Patients with Steroid-Resistant Nephrotic Syndrome. Clin J Am Soc Nephrol 13, 53-62 (2018).
Whole Exome Sequencing of Patients with Steroid-Resistant Nephrotic Syndrome. Clin J Am Soc Nephrol 13, 53-62 (2018).
Whole Exome Sequencing of Patients with Steroid-Resistant Nephrotic Syndrome. Clin J Am Soc Nephrol 13, 53-62 (2018).
Whole Exome Sequencing Reveals a Monogenic Cause of Disease in ≈43% of 35 Families With Midaortic Syndrome. Hypertension 71, 691-699 (2018).
Whole Exome Sequencing Reveals a Monogenic Cause of Disease in ≈43% of 35 Families With Midaortic Syndrome. Hypertension 71, 691-699 (2018).
Whole Exome Sequencing Reveals a Monogenic Cause of Disease in ≈43% of 35 Families With Midaortic Syndrome. Hypertension 71, 691-699 (2018).
Whole Exome Sequencing Reveals a Monogenic Cause of Disease in ≈43% of 35 Families With Midaortic Syndrome. Hypertension 71, 691-699 (2018).
Whole Exome Sequencing Reveals a Monogenic Cause of Disease in ≈43% of 35 Families With Midaortic Syndrome. Hypertension 71, 691-699 (2018).
Whole Exome Sequencing Reveals a Monogenic Cause of Disease in ≈43% of 35 Families With Midaortic Syndrome. Hypertension 71, 691-699 (2018).
Whole Exome Sequencing Reveals a Monogenic Cause of Disease in ≈43% of 35 Families With Midaortic Syndrome. Hypertension 71, 691-699 (2018).
Whole-Exome Sequencing Identifies Causative Mutations in Families with Congenital Anomalies of the Kidney and Urinary Tract. J Am Soc Nephrol 29, 2348-2361 (2018).
Whole-Exome Sequencing Identifies Causative Mutations in Families with Congenital Anomalies of the Kidney and Urinary Tract. J Am Soc Nephrol 29, 2348-2361 (2018).
Whole-Exome Sequencing Identifies Causative Mutations in Families with Congenital Anomalies of the Kidney and Urinary Tract. J Am Soc Nephrol 29, 2348-2361 (2018).