Publications

Export 1954 results:
Author Title [ Year(Asc)]
Filters: First Letter Of Last Name is B  [Clear All Filters]
2016
Kim, J. - H. et al. De Novo Mutations in SON Disrupt RNA Splicing of Genes Essential for Brain Development and Metabolism, Causing an Intellectual-Disability Syndrome. Am J Hum Genet 99, 711-719 (2016).
Kim, J. - H. et al. De Novo Mutations in SON Disrupt RNA Splicing of Genes Essential for Brain Development and Metabolism, Causing an Intellectual-Disability Syndrome. Am J Hum Genet 99, 711-719 (2016).
Kim, J. - H. et al. De Novo Mutations in SON Disrupt RNA Splicing of Genes Essential for Brain Development and Metabolism, Causing an Intellectual-Disability Syndrome. Am J Hum Genet 99, 711-719 (2016).
Kim, J. - H. et al. De Novo Mutations in SON Disrupt RNA Splicing of Genes Essential for Brain Development and Metabolism, Causing an Intellectual-Disability Syndrome. Am J Hum Genet 99, 711-719 (2016).
Duran, I. et al. Destabilization of the IFT-B cilia core complex due to mutations in IFT81 causes a Spectrum of Short-Rib Polydactyly Syndrome. Sci Rep 6, 34232 (2016).
Duran, D. et al. Digenic mutations of human paralogs in Dent's disease type 2 associated with Chiari I malformation. Hum Genome Var 3, 16042 (2016).
Wallace, S. et al. Disrupted nitric oxide signaling due to GUCY1A3 mutations increases risk for moyamoya disease, achalasia and hypertension. Clin Genet 90, 351-60 (2016).
Wallace, S. et al. Disrupted nitric oxide signaling due to GUCY1A3 mutations increases risk for moyamoya disease, achalasia and hypertension. Clin Genet 90, 351-60 (2016).
Boyden, L. M. et al. Dominant de novo DSP mutations cause erythrokeratodermia-cardiomyopathy syndrome. Hum Mol Genet 25, 348-57 (2016).
White, J. J. et al. DVL3 Alleles Resulting in a -1 Frameshift of the Last Exon Mediate Autosomal-Dominant Robinow Syndrome. Am J Hum Genet 98, 553-561 (2016).
White, J. J. et al. DVL3 Alleles Resulting in a -1 Frameshift of the Last Exon Mediate Autosomal-Dominant Robinow Syndrome. Am J Hum Genet 98, 553-561 (2016).
White, J. J. et al. DVL3 Alleles Resulting in a -1 Frameshift of the Last Exon Mediate Autosomal-Dominant Robinow Syndrome. Am J Hum Genet 98, 553-561 (2016).
Qiao, D. et al. Exome Sequencing Analysis in Severe, Early-Onset Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 193, 1353-63 (2016).
Qiao, D. et al. Exome Sequencing Analysis in Severe, Early-Onset Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 193, 1353-63 (2016).
Qiao, D. et al. Exome Sequencing Analysis in Severe, Early-Onset Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 193, 1353-63 (2016).
Qiao, D. et al. Exome Sequencing Analysis in Severe, Early-Onset Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 193, 1353-63 (2016).
Adam, R. et al. Exome Sequencing Identifies Biallelic MSH3 Germline Mutations as a Recessive Subtype of Colorectal Adenomatous Polyposis. Am J Hum Genet 99, 337-51 (2016).
Adam, R. et al. Exome Sequencing Identifies Biallelic MSH3 Germline Mutations as a Recessive Subtype of Colorectal Adenomatous Polyposis. Am J Hum Genet 99, 337-51 (2016).
Adam, R. et al. Exome Sequencing Identifies Biallelic MSH3 Germline Mutations as a Recessive Subtype of Colorectal Adenomatous Polyposis. Am J Hum Genet 99, 337-51 (2016).
Spier, I. et al. Exome sequencing identifies potential novel candidate genes in patients with unexplained colorectal adenomatous polyposis. Fam Cancer 15, 281-8 (2016).
Charng, W. - L. et al. Exome sequencing in mostly consanguineous Arab families with neurologic disease provides a high potential molecular diagnosis rate. BMC Med Genomics 9, 42 (2016).
Ansar, M. et al. Expansion of the spectrum of ITGB6-related disorders to adolescent alopecia, dentogingival abnormalities and intellectual disability. Eur J Hum Genet 24, 1223-7 (2016).
Gee, H. Yung et al. FAT1 mutations cause a glomerulotubular nephropathy. Nat Commun 7, 10822 (2016).
Gee, H. Yung et al. FAT1 mutations cause a glomerulotubular nephropathy. Nat Commun 7, 10822 (2016).
Gee, H. Yung et al. FAT1 mutations cause a glomerulotubular nephropathy. Nat Commun 7, 10822 (2016).
Gee, H. Yung et al. FAT1 mutations cause a glomerulotubular nephropathy. Nat Commun 7, 10822 (2016).
Kuang, S. - Q. et al. FOXE3 mutations predispose to thoracic aortic aneurysms and dissections. J Clin Invest 126, 948-61 (2016).
Kuang, S. - Q. et al. FOXE3 mutations predispose to thoracic aortic aneurysms and dissections. J Clin Invest 126, 948-61 (2016).
Chong, J. X. et al. Gene discovery for Mendelian conditions via social networking: de novo variants in KDM1A cause developmental delay and distinctive facial features. Genet Med 18, 788-95 (2016).
Chong, J. X. et al. Gene discovery for Mendelian conditions via social networking: de novo variants in KDM1A cause developmental delay and distinctive facial features. Genet Med 18, 788-95 (2016).
Hanchard, N. A. et al. A genome-wide association study of congenital cardiovascular left-sided lesions shows association with a locus on chromosome 20. Hum Mol Genet 25, 2331-2341 (2016).
Hanchard, N. A. et al. A genome-wide association study of congenital cardiovascular left-sided lesions shows association with a locus on chromosome 20. Hum Mol Genet 25, 2331-2341 (2016).
Hanchard, N. A. et al. A genome-wide association study of congenital cardiovascular left-sided lesions shows association with a locus on chromosome 20. Hum Mol Genet 25, 2331-2341 (2016).
Hanchard, N. A. et al. A genome-wide association study of congenital cardiovascular left-sided lesions shows association with a locus on chromosome 20. Hum Mol Genet 25, 2331-2341 (2016).
Hanchard, N. A. et al. A genome-wide association study of congenital cardiovascular left-sided lesions shows association with a locus on chromosome 20. Hum Mol Genet 25, 2331-2341 (2016).
Hanchard, N. A. et al. A genome-wide association study of congenital cardiovascular left-sided lesions shows association with a locus on chromosome 20. Hum Mol Genet 25, 2331-2341 (2016).
Petrovski, S. et al. Germline De Novo Mutations in GNB1 Cause Severe Neurodevelopmental Disability, Hypotonia, and Seizures. Am J Hum Genet 98, 1001-1010 (2016).
Petrovski, S. et al. Germline De Novo Mutations in GNB1 Cause Severe Neurodevelopmental Disability, Hypotonia, and Seizures. Am J Hum Genet 98, 1001-1010 (2016).
Petrovski, S. et al. Germline De Novo Mutations in GNB1 Cause Severe Neurodevelopmental Disability, Hypotonia, and Seizures. Am J Hum Genet 98, 1001-1010 (2016).
Petrovski, S. et al. Germline De Novo Mutations in GNB1 Cause Severe Neurodevelopmental Disability, Hypotonia, and Seizures. Am J Hum Genet 98, 1001-1010 (2016).
Petrovski, S. et al. Germline De Novo Mutations in GNB1 Cause Severe Neurodevelopmental Disability, Hypotonia, and Seizures. Am J Hum Genet 98, 1001-1010 (2016).
Petrovski, S. et al. Germline De Novo Mutations in GNB1 Cause Severe Neurodevelopmental Disability, Hypotonia, and Seizures. Am J Hum Genet 98, 1001-1010 (2016).
Petrovski, S. et al. Germline De Novo Mutations in GNB1 Cause Severe Neurodevelopmental Disability, Hypotonia, and Seizures. Am J Hum Genet 98, 1001-1010 (2016).
Braunstein, E. M. et al. A germline ERBB3 variant is a candidate for predisposition to erythroid MDS/erythroleukemia. Leukemia 30, 2242-2245 (2016).
Braunstein, E. M. et al. A germline ERBB3 variant is a candidate for predisposition to erythroid MDS/erythroleukemia. Leukemia 30, 2242-2245 (2016).
Iacovazzo, D. et al. Germline or somatic GPR101 duplication leads to X-linked acrogigantism: a clinico-pathological and genetic study. Acta Neuropathol Commun 4, 56 (2016).
Iacovazzo, D. et al. Germline or somatic GPR101 duplication leads to X-linked acrogigantism: a clinico-pathological and genetic study. Acta Neuropathol Commun 4, 56 (2016).
Iacovazzo, D. et al. Germline or somatic GPR101 duplication leads to X-linked acrogigantism: a clinico-pathological and genetic study. Acta Neuropathol Commun 4, 56 (2016).
Lim, Y. H. et al. GNA14 Somatic Mutation Causes Congenital and Sporadic Vascular Tumors by MAPK Activation. Am J Hum Genet 99, 443-50 (2016).
Lim, Y. H. et al. GNA14 Somatic Mutation Causes Congenital and Sporadic Vascular Tumors by MAPK Activation. Am J Hum Genet 99, 443-50 (2016).

Pages