Publications
Export 1753 results:
Author Title [ Year
Filters: First Letter Of Last Name is M [Clear All Filters]
Pro-inflammation Associated with a Gain-of-Function Mutation (R284S) in the Innate Immune Sensor STING. Cell Rep 23, 1112-1123 (2018).
Rhombencephalosynapsis: Fused cerebellum, confused geneticists. Am J Med Genet C Semin Med Genet 178, 432-439 (2018).
The role of FREM2 and FRAS1 in the development of congenital diaphragmatic hernia. Hum Mol Genet 27, 2064-2075 (2018).
Severe neurocognitive and growth disorders due to variation in THOC2, an essential component of nuclear mRNA export machinery. Hum Mutat 39, 1126-1138 (2018).
Severe neurocognitive and growth disorders due to variation in THOC2, an essential component of nuclear mRNA export machinery. Hum Mutat 39, 1126-1138 (2018).
Severe neurocognitive and growth disorders due to variation in THOC2, an essential component of nuclear mRNA export machinery. Hum Mutat 39, 1126-1138 (2018).
Severe neurocognitive and growth disorders due to variation in THOC2, an essential component of nuclear mRNA export machinery. Hum Mutat 39, 1126-1138 (2018).
Somatic SLC35A2 variants in the brain are associated with intractable neocortical epilepsy. Ann Neurol 83, 1133-1146 (2018).
Somatic SLC35A2 variants in the brain are associated with intractable neocortical epilepsy. Ann Neurol 83, 1133-1146 (2018).
Somatic SLC35A2 variants in the brain are associated with intractable neocortical epilepsy. Ann Neurol 83, 1133-1146 (2018).
Somatic SLC35A2 variants in the brain are associated with intractable neocortical epilepsy. Ann Neurol 83, 1133-1146 (2018).
Somatic SLC35A2 variants in the brain are associated with intractable neocortical epilepsy. Ann Neurol 83, 1133-1146 (2018).
Somatic SLC35A2 variants in the brain are associated with intractable neocortical epilepsy. Ann Neurol 83, 1133-1146 (2018).
STRetch: detecting and discovering pathogenic short tandem repeat expansions. Genome Biol 19, 121 (2018).
Truncating Variants in NAA15 Are Associated with Variable Levels of Intellectual Disability, Autism Spectrum Disorder, and Congenital Anomalies. Am J Hum Genet 102, 985-994 (2018).
Truncating Variants in NAA15 Are Associated with Variable Levels of Intellectual Disability, Autism Spectrum Disorder, and Congenital Anomalies. Am J Hum Genet 102, 985-994 (2018).
Truncating Variants in NAA15 Are Associated with Variable Levels of Intellectual Disability, Autism Spectrum Disorder, and Congenital Anomalies. Am J Hum Genet 102, 985-994 (2018).
Truncating Variants in NAA15 Are Associated with Variable Levels of Intellectual Disability, Autism Spectrum Disorder, and Congenital Anomalies. Am J Hum Genet 102, 985-994 (2018).
Truncating Variants in NAA15 Are Associated with Variable Levels of Intellectual Disability, Autism Spectrum Disorder, and Congenital Anomalies. Am J Hum Genet 102, 985-994 (2018).
Tuberculosis and impaired IL-23-dependent IFN-γ immunity in humans homozygous for a common missense variant. Sci Immunol 3, (2018).
Tuberculosis and impaired IL-23-dependent IFN-γ immunity in humans homozygous for a common missense variant. Sci Immunol 3, (2018).
Tuberculosis and impaired IL-23-dependent IFN-γ immunity in humans homozygous for a common missense variant. Sci Immunol 3, (2018).
Tuberculosis and impaired IL-23-dependent IFN-γ immunity in humans homozygous for a common missense variant. Sci Immunol 3, (2018).
Tuberculosis and impaired IL-23-dependent IFN-γ immunity in humans homozygous for a common missense variant. Sci Immunol 3, (2018).
Tuberculosis and impaired IL-23-dependent IFN-γ immunity in humans homozygous for a common missense variant. Sci Immunol 3, (2018).
Tuberculosis and impaired IL-23-dependent IFN-γ immunity in humans homozygous for a common missense variant. Sci Immunol 3, (2018).
Variants in EXOSC9 Disrupt the RNA Exosome and Result in Cerebellar Atrophy with Spinal Motor Neuronopathy. Am J Hum Genet 102, 858-873 (2018).
Variants in EXOSC9 Disrupt the RNA Exosome and Result in Cerebellar Atrophy with Spinal Motor Neuronopathy. Am J Hum Genet 102, 858-873 (2018).
Variants in EXOSC9 Disrupt the RNA Exosome and Result in Cerebellar Atrophy with Spinal Motor Neuronopathy. Am J Hum Genet 102, 858-873 (2018).
Variants in EXOSC9 Disrupt the RNA Exosome and Result in Cerebellar Atrophy with Spinal Motor Neuronopathy. Am J Hum Genet 102, 858-873 (2018).
Variants in EXOSC9 Disrupt the RNA Exosome and Result in Cerebellar Atrophy with Spinal Motor Neuronopathy. Am J Hum Genet 102, 858-873 (2018).
Variants in EXOSC9 Disrupt the RNA Exosome and Result in Cerebellar Atrophy with Spinal Motor Neuronopathy. Am J Hum Genet 102, 858-873 (2018).
Variants in EXOSC9 Disrupt the RNA Exosome and Result in Cerebellar Atrophy with Spinal Motor Neuronopathy. Am J Hum Genet 102, 858-873 (2018).
Whole exome sequencing analysis in severe chronic obstructive pulmonary disease. Hum Mol Genet 27, 3801-3812 (2018).
Whole exome sequencing analysis in severe chronic obstructive pulmonary disease. Hum Mol Genet 27, 3801-3812 (2018).
Whole exome sequencing frequently detects a monogenic cause in early onset nephrolithiasis and nephrocalcinosis. Kidney Int 93, 204-213 (2018).
Whole exome sequencing frequently detects a monogenic cause in early onset nephrolithiasis and nephrocalcinosis. Kidney Int 93, 204-213 (2018).
Whole exome sequencing frequently detects a monogenic cause in early onset nephrolithiasis and nephrocalcinosis. Kidney Int 93, 204-213 (2018).
Whole Exome Sequencing of Patients with Steroid-Resistant Nephrotic Syndrome. Clin J Am Soc Nephrol 13, 53-62 (2018).
Whole Exome Sequencing of Patients with Steroid-Resistant Nephrotic Syndrome. Clin J Am Soc Nephrol 13, 53-62 (2018).
Whole Exome Sequencing of Patients with Steroid-Resistant Nephrotic Syndrome. Clin J Am Soc Nephrol 13, 53-62 (2018).
Whole Exome Sequencing of Patients with Steroid-Resistant Nephrotic Syndrome. Clin J Am Soc Nephrol 13, 53-62 (2018).
Whole Exome Sequencing Reveals a Monogenic Cause of Disease in ≈43% of 35 Families With Midaortic Syndrome. Hypertension 71, 691-699 (2018).
Whole-Exome Sequencing Identifies Causative Mutations in Families with Congenital Anomalies of the Kidney and Urinary Tract. J Am Soc Nephrol 29, 2348-2361 (2018).
Whole-Exome Sequencing Identifies Causative Mutations in Families with Congenital Anomalies of the Kidney and Urinary Tract. J Am Soc Nephrol 29, 2348-2361 (2018).
Whole-Exome Sequencing Identifies Causative Mutations in Families with Congenital Anomalies of the Kidney and Urinary Tract. J Am Soc Nephrol 29, 2348-2361 (2018).
Whole-Exome Sequencing Identifies Causative Mutations in Families with Congenital Anomalies of the Kidney and Urinary Tract. J Am Soc Nephrol 29, 2348-2361 (2018).