Publications

Export 947 results:
Author Title [ Year(Desc)]
Filters: First Letter Of Last Name is D  [Clear All Filters]
2019
Amor, D. J. et al. Pathogenic Variants in GPC4 Cause Keipert Syndrome. Am J Hum Genet 104, 914-924 (2019).
Amor, D. J. et al. Pathogenic Variants in GPC4 Cause Keipert Syndrome. Am J Hum Genet 104, 914-924 (2019).
Oswiecimska, J. et al. A Patient with Berardinelli-Seip Syndrome, Novel Splicesite Mutation and Concomitant Development of Non-diabetic Polyneuropathy. J Clin Res Pediatr Endocrinol 11, 319-326 (2019).
Davis, S. D. et al. Primary Ciliary Dyskinesia: Longitudinal Study of Lung Disease by Ultrastructure Defect and Genotype. Am J Respir Crit Care Med 199, 190-198 (2019).
Davis, S. D. et al. Primary Ciliary Dyskinesia: Longitudinal Study of Lung Disease by Ultrastructure Defect and Genotype. Am J Respir Crit Care Med 199, 190-198 (2019).
Liu, P. et al. Reanalysis of Clinical Exome Sequencing Data. N Engl J Med 380, 2478-2480 (2019).
Liu, P. et al. Reanalysis of Clinical Exome Sequencing Data. N Engl J Med 380, 2478-2480 (2019).
Estañ, M. Cristina et al. Recessive mutations in muscle-specific isoforms of FXR1 cause congenital multi-minicore myopathy. Nat Commun 10, 797 (2019).
Bolduc, V. et al. A recurrent COL6A1 pseudoexon insertion causes muscular dystrophy and is effectively targeted by splice-correction therapies. JCI Insight 4, (2019).
Aldinger, K. A. et al. Redefining the Etiologic Landscape of Cerebellar Malformations. Am J Hum Genet 105, 606-615 (2019).
Aldinger, K. A. et al. Redefining the Etiologic Landscape of Cerebellar Malformations. Am J Hum Genet 105, 606-615 (2019).
Gould, R. A. et al. ROBO4 variants predispose individuals to bicuspid aortic valve and thoracic aortic aneurysm. Nat Genet 51, 42-50 (2019).
Duan, X. - Y. et al. SMAD4 rare variants in individuals and families with thoracic aortic aneurysms and dissections. Eur J Hum Genet 27, 1054-1060 (2019).
Duan, X. - Y. et al. SMAD4 rare variants in individuals and families with thoracic aortic aneurysms and dissections. Eur J Hum Genet 27, 1054-1060 (2019).
Zweier, M. et al. Spatially clustering de novo variants in CYFIP2, encoding the cytoplasmic FMRP interacting protein 2, cause intellectual disability and seizures. Eur J Hum Genet 27, 747-759 (2019).
Yang, N. et al. TBX6 compound inheritance leads to congenital vertebral malformations in humans and mice. Hum Mol Genet 28, 539-547 (2019).
Yang, N. et al. TBX6 compound inheritance leads to congenital vertebral malformations in humans and mice. Hum Mol Genet 28, 539-547 (2019).
Liu, J. et al. TBX6-associated congenital scoliosis (TACS) as a clinically distinguishable subtype of congenital scoliosis: further evidence supporting the compound inheritance and TBX6 gene dosage model. Genet Med 21, 1548-1558 (2019).
Liu, J. et al. TBX6-associated congenital scoliosis (TACS) as a clinically distinguishable subtype of congenital scoliosis: further evidence supporting the compound inheritance and TBX6 gene dosage model. Genet Med 21, 1548-1558 (2019).
Liu, J. et al. TBX6-associated congenital scoliosis (TACS) as a clinically distinguishable subtype of congenital scoliosis: further evidence supporting the compound inheritance and TBX6 gene dosage model. Genet Med 21, 1548-1558 (2019).
Mann, N. et al. Whole-Exome Sequencing Enables a Precision Medicine Approach for Kidney Transplant Recipients. J Am Soc Nephrol 30, 201-215 (2019).
Mann, N. et al. Whole-Exome Sequencing Enables a Precision Medicine Approach for Kidney Transplant Recipients. J Am Soc Nephrol 30, 201-215 (2019).
Carapito, R. et al. ZMIZ1 Variants Cause a Syndromic Neurodevelopmental Disorder. Am J Hum Genet 104, 319-330 (2019).
Carapito, R. et al. ZMIZ1 Variants Cause a Syndromic Neurodevelopmental Disorder. Am J Hum Genet 104, 319-330 (2019).
Carapito, R. et al. ZMIZ1 Variants Cause a Syndromic Neurodevelopmental Disorder. Am J Hum Genet 104, 319-330 (2019).
Carapito, R. et al. ZMIZ1 Variants Cause a Syndromic Neurodevelopmental Disorder. Am J Hum Genet 104, 319-330 (2019).
2020
Dupont, W. D. et al. 8q24 genetic variation and comprehensive haplotypes altering familial risk of prostate cancer. Nat Commun 11, 1523 (2020).
Villar-Quiles, R. N. et al. ASC-1 Is a Cell Cycle Regulator Associated with Severe and Mild Forms of Myopathy. Ann Neurol 87, 217-232 (2020).
Villar-Quiles, R. N. et al. ASC-1 Is a Cell Cycle Regulator Associated with Severe and Mild Forms of Myopathy. Ann Neurol 87, 217-232 (2020).
Villar-Quiles, R. N. et al. ASC-1 Is a Cell Cycle Regulator Associated with Severe and Mild Forms of Myopathy. Ann Neurol 87, 217-232 (2020).
Bastard, P. et al. Autoantibodies against type I IFNs in patients with life-threatening COVID-19. Science 370, (2020).
Bastard, P. et al. Autoantibodies against type I IFNs in patients with life-threatening COVID-19. Science 370, (2020).
Bastard, P. et al. Autoantibodies against type I IFNs in patients with life-threatening COVID-19. Science 370, (2020).
Bastard, P. et al. Autoantibodies against type I IFNs in patients with life-threatening COVID-19. Science 370, (2020).
Bastard, P. et al. Autoantibodies against type I IFNs in patients with life-threatening COVID-19. Science 370, (2020).
Bastard, P. et al. Autoantibodies against type I IFNs in patients with life-threatening COVID-19. Science 370, (2020).
Bastard, P. et al. Autoantibodies against type I IFNs in patients with life-threatening COVID-19. Science 370, (2020).
Bastard, P. et al. Autoantibodies against type I IFNs in patients with life-threatening COVID-19. Science 370, (2020).
Charlton, J. R. et al. Beyond the tubule: pathological variants of , encoding the megalin receptor, result in glomerular loss and early progressive chronic kidney disease. Am J Physiol Renal Physiol 319, F988-F999 (2020).
Chatron, N. et al. Bi-allelic GAD1 variants cause a neonatal onset syndromic developmental and epileptic encephalopathy. Brain 143, 1447-1461 (2020).
Marafi, D. et al. Biallelic GRM7 variants cause epilepsy, microcephaly, and cerebral atrophy. Ann Clin Transl Neurol 7, 610-627 (2020).
Saad, A. K. et al. Biallelic in-frame deletion in TRAPPC4 in a family with developmental delay and cerebellar atrophy. Brain 143, e83 (2020).
Donkervoort, S. et al. Biallelic loss of function variants in SYT2 cause a treatable congenital onset presynaptic myasthenic syndrome. Am J Med Genet A 182, 2272-2283 (2020).
Barad, M. et al. Biallelic mutations in LAMA5 disrupts a skeletal noncanonical focal adhesion pathway and produces a distinct bent bone dysplasia. EBioMedicine 62, 103075 (2020).
Le, T. - L. et al. Bi-allelic Variations of SMO in Humans Cause a Broad Spectrum of Developmental Anomalies Due to Abnormal Hedgehog Signaling. Am J Hum Genet 106, 779-792 (2020).
Kim-Hellmuth, S. et al. Cell type-specific genetic regulation of gene expression across human tissues. Science 369, (2020).
Yuan, B. et al. CNVs cause autosomal recessive genetic diseases with or without involvement of SNV/indels. Genet Med 22, 1633-1641 (2020).
Stavusis, J. et al. Collagen VI-related limb-girdle syndrome caused by frequent mutation in COL6A3 gene with conflicting reports of pathogenicity. Neuromuscul Disord 30, 483-491 (2020).
Stavusis, J. et al. Collagen VI-related limb-girdle syndrome caused by frequent mutation in COL6A3 gene with conflicting reports of pathogenicity. Neuromuscul Disord 30, 483-491 (2020).
Biffi, A. et al. Combining Imaging and Genetics to Predict Recurrence of Anticoagulation-Associated Intracerebral Hemorrhage. Stroke 51, 2153-2160 (2020).

Pages