Title | Joubert syndrome: a model for untangling recessive disorders with extreme genetic heterogeneity. |
Publication Type | Journal Article |
Year of Publication | 2015 |
Authors | Bachmann-Gagescu, R, Dempsey, JC, Phelps, IG, O'Roak, BJ, Knutzen, DM, Rue, TC, Ishak, GE, Isabella, CR, Gorden, N, Adkins, J, Boyle, EA, de Lacy, N, O'Day, D, Alswaid, A, A, RRamadevi, Lingappa, L, Lourenço, C, Martorell, L, Garcia-Cazorla, À, Ozyürek, H, Haliloğlu, G, Tuysuz, B, Topçu, M, Chance, P, Parisi, MA, Glass, IA, Shendure, J, Doherty, D |
Corporate Authors | University of Washington Center for Mendelian Genomics |
Journal | J Med Genet |
Volume | 52 |
Issue | 8 |
Pagination | 514-22 |
Date Published | 2015 Aug |
ISSN | 1468-6244 |
Keywords | Abnormalities, Multiple, Cerebellum, Cohort Studies, DNA Mutational Analysis, Eye Abnormalities, Genetic Association Studies, Genetic Heterogeneity, Humans, Kidney Diseases, Cystic, Models, Theoretical, Pedigree, Retina, Sequence Analysis, DNA |
Abstract | BACKGROUND: Joubert syndrome (JS) is a recessive neurodevelopmental disorder characterised by hypotonia, ataxia, cognitive impairment, abnormal eye movements, respiratory control disturbances and a distinctive mid-hindbrain malformation. JS demonstrates substantial phenotypic variability and genetic heterogeneity. This study provides a comprehensive view of the current genetic basis, phenotypic range and gene-phenotype associations in JS. METHODS: We sequenced 27 JS-associated genes in 440 affected individuals (375 families) from a cohort of 532 individuals (440 families) with JS, using molecular inversion probe-based targeted capture and next-generation sequencing. Variant pathogenicity was defined using the Combined Annotation Dependent Depletion algorithm with an optimised score cut-off. RESULTS: We identified presumed causal variants in 62% of pedigrees, including the first B9D2 mutations associated with JS. 253 different mutations in 23 genes highlight the extreme genetic heterogeneity of JS. Phenotypic analysis revealed that only 34% of individuals have a 'pure JS' phenotype. Retinal disease is present in 30% of individuals, renal disease in 25%, coloboma in 17%, polydactyly in 15%, liver fibrosis in 14% and encephalocele in 8%. Loss of CEP290 function is associated with retinal dystrophy, while loss of TMEM67 function is associated with liver fibrosis and coloboma, but we observe no clear-cut distinction between JS subtypes. CONCLUSIONS: This work illustrates how combining advanced sequencing techniques with phenotypic data addresses extreme genetic heterogeneity to provide diagnostic and carrier testing, guide medical monitoring for progressive complications, facilitate interpretation of genome-wide sequencing results in individuals with a variety of phenotypes and enable gene-specific treatments in the future. |
DOI | 10.1136/jmedgenet-2015-103087 |
Alternate Journal | J. Med. Genet. |
PubMed ID | 26092869 |
PubMed Central ID | PMC5082428 |
Grant List | U54 HG006493 / HG / NHGRI NIH HHS / United States U54 HD083091 / HD / NICHD NIH HHS / United States K24HD046712 / HD / NICHD NIH HHS / United States U54HD083091 / HD / NICHD NIH HHS / United States R01NS064077 / NS / NINDS NIH HHS / United States UM1 HG006493 / HG / NHGRI NIH HHS / United States 1U54HG006493 / HG / NHGRI NIH HHS / United States K23 NS045832 / NS / NINDS NIH HHS / United States K24 HD046712 / HD / NICHD NIH HHS / United States R01 NS064077 / NS / NINDS NIH HHS / United States K23NS45832 / NS / NINDS NIH HHS / United States |