Individual exome analysis in diagnosis and management of paediatric liver failure of indeterminate aetiology.

TitleIndividual exome analysis in diagnosis and management of paediatric liver failure of indeterminate aetiology.
Publication TypeJournal Article
Year of Publication2014
AuthorsVilarinho, S, Choi, M, Jain, D, Malhotra, A, Kulkarni, S, Pashankar, D, Phatak, U, Patel, M, Bale, A, Mane, S, Lifton, RP, Mistry, PK
JournalJ Hepatol
Volume61
Issue5
Pagination1056-63
Date Published2014 Nov
ISSN1600-0641
KeywordsAmino Acid Sequence, Base Sequence, Carboxylic Ester Hydrolases, Child, Cholestasis, DNA Mutational Analysis, End Stage Liver Disease, Exome, Fatal Outcome, Female, Genes, Recessive, Hepatolenticular Degeneration, Heterozygote, Homozygote, Humans, Infant, Newborn, Liver Failure, Liver Failure, Acute, Male, Membrane Proteins, Mitochondrial Proteins, Molecular Sequence Data, Pedigree, Receptor, Notch2, RNA Splice Sites, Sequence Homology, Amino Acid
Abstract

BACKGROUND & AIMS: In children with liver failure, as many as half remain of indeterminate aetiology. This hinders timely consideration of optimal treatment options. We posit that a significant subset of these children harbour known inherited metabolic liver diseases with atypical presentation or novel inborn errors of metabolism. We investigated the utility of whole-exome sequencing in three children with advanced liver disease of indeterminate aetiology.

METHODS: Patient 1 was a 10 year-old female diagnosed with Wilson disease but no detectable ATP7B mutations, and decompensated liver cirrhosis who underwent liver transplant and subsequently developed onset of neurodegenerative disease. Patient 2 was a full-term 2 day-old male with fatal acute liver failure of indeterminate aetiology. Patient 3 was an 8 year-old female with progressive syndromic cholestasis of unknown aetiology since age 3 months.

RESULTS: Unbiased whole-exome sequencing of germline DNA revealed homozygous mutations in MPV17 and SERAC1 as the disease causing genes in patient 1 and 2, respectively. This is the first demonstration of SERAC1 loss-of-function associated fatal acute liver failure. Patient 1 expands the phenotypic spectrum of the MPV17-related hepatocerebral mitochondrial DNA depletion syndrome. Patient 3 was found to have syndromic cholestasis due to bi-allelic NOTCH2 mutations.

CONCLUSIONS: Our findings validate the application of whole-exome sequencing in the diagnosis and management of children with advanced liver disease of indeterminate aetiology, with the potential to enhance optimal selection of treatment options and adequate counselling of families. Moreover, whole-exome sequencing revealed a hitherto unrecognized phenotypic spectrum of inherited metabolic liver diseases.

DOI10.1016/j.jhep.2014.06.038
Alternate JournalJ. Hepatol.
PubMed ID25016221
PubMed Central IDPMC4203706
Grant ListK24 DK066306 / DK / NIDDK NIH HHS / United States
P30 CA016359 / CA / NCI NIH HHS / United States
UL1 TR000142 / TR / NCATS NIH HHS / United States
U04HG.006504 / HG / NHGRI NIH HHS / United States