Publications

Export 1569 results:
Author Title [ Year(Asc)]
Filters: First Letter Of Last Name is C  [Clear All Filters]
2019
Beck, C. R. et al. Megabase Length Hypermutation Accompanies Human Structural Variation at 17p11.2. Cell 176, 1310-1324.e10 (2019).
Beck, C. R. et al. Megabase Length Hypermutation Accompanies Human Structural Variation at 17p11.2. Cell 176, 1310-1324.e10 (2019).
Beck, C. R. et al. Megabase Length Hypermutation Accompanies Human Structural Variation at 17p11.2. Cell 176, 1310-1324.e10 (2019).
Beck, C. R. et al. Megabase Length Hypermutation Accompanies Human Structural Variation at 17p11.2. Cell 176, 1310-1324.e10 (2019).
Bamshad, M. J., Nickerson, D. A. & Chong, J. X. Mendelian Gene Discovery: Fast and Furious with No End in Sight. Am J Hum Genet 105, 448-455 (2019).
Wang, L. et al. metaFARVAT: An Efficient Tool for Meta-Analysis of Family-Based, Case-Control, and Population-Based Rare Variant Association Studies. Front Genet 10, 572 (2019).
Cogné, B. et al. Missense Variants in the Histone Acetyltransferase Complex Component Gene TRRAP Cause Autism and Syndromic Intellectual Disability. Am J Hum Genet 104, 530-541 (2019).
Cogné, B. et al. Missense Variants in the Histone Acetyltransferase Complex Component Gene TRRAP Cause Autism and Syndromic Intellectual Disability. Am J Hum Genet 104, 530-541 (2019).
Cogné, B. et al. Missense Variants in the Histone Acetyltransferase Complex Component Gene TRRAP Cause Autism and Syndromic Intellectual Disability. Am J Hum Genet 104, 530-541 (2019).
Cogné, B. et al. Missense Variants in the Histone Acetyltransferase Complex Component Gene TRRAP Cause Autism and Syndromic Intellectual Disability. Am J Hum Genet 104, 530-541 (2019).
Cogné, B. et al. Missense Variants in the Histone Acetyltransferase Complex Component Gene TRRAP Cause Autism and Syndromic Intellectual Disability. Am J Hum Genet 104, 530-541 (2019).
Connaughton, D. M. et al. Monogenic causes of chronic kidney disease in adults. Kidney Int 95, 914-928 (2019).
Connaughton, D. M. et al. Monogenic causes of chronic kidney disease in adults. Kidney Int 95, 914-928 (2019).
Connaughton, D. M. et al. Monogenic causes of chronic kidney disease in adults. Kidney Int 95, 914-928 (2019).
Connaughton, D. M. et al. Monogenic causes of chronic kidney disease in adults. Kidney Int 95, 914-928 (2019).
Donkervoort, S. et al. MSTO1 mutations cause mtDNA depletion, manifesting as muscular dystrophy with cerebellar involvement. Acta Neuropathol 138, 1013-1031 (2019).
Donkervoort, S. et al. MSTO1 mutations cause mtDNA depletion, manifesting as muscular dystrophy with cerebellar involvement. Acta Neuropathol 138, 1013-1031 (2019).
Donkervoort, S. et al. MSTO1 mutations cause mtDNA depletion, manifesting as muscular dystrophy with cerebellar involvement. Acta Neuropathol 138, 1013-1031 (2019).
Donkervoort, S. et al. MSTO1 mutations cause mtDNA depletion, manifesting as muscular dystrophy with cerebellar involvement. Acta Neuropathol 138, 1013-1031 (2019).
Donkervoort, S. et al. MSTO1 mutations cause mtDNA depletion, manifesting as muscular dystrophy with cerebellar involvement. Acta Neuropathol 138, 1013-1031 (2019).
Donkervoort, S. et al. MSTO1 mutations cause mtDNA depletion, manifesting as muscular dystrophy with cerebellar involvement. Acta Neuropathol 138, 1013-1031 (2019).
Link, N. et al. Mutations in ANKLE2, a ZIKA Virus Target, Disrupt an Asymmetric Cell Division Pathway in Drosophila Neuroblasts to Cause Microcephaly. Dev Cell 51, 713-729.e6 (2019).
Link, N. et al. Mutations in ANKLE2, a ZIKA Virus Target, Disrupt an Asymmetric Cell Division Pathway in Drosophila Neuroblasts to Cause Microcephaly. Dev Cell 51, 713-729.e6 (2019).
Cox, T. C. et al. Mutations in GDF11 and the extracellular antagonist, Follistatin, as a likely cause of Mendelian forms of orofacial clefting in humans. Hum Mutat 40, 1813-1825 (2019).
Cox, T. C. et al. Mutations in GDF11 and the extracellular antagonist, Follistatin, as a likely cause of Mendelian forms of orofacial clefting in humans. Hum Mutat 40, 1813-1825 (2019).
Cox, T. C. et al. Mutations in GDF11 and the extracellular antagonist, Follistatin, as a likely cause of Mendelian forms of orofacial clefting in humans. Hum Mutat 40, 1813-1825 (2019).
Cox, T. C. et al. Mutations in GDF11 and the extracellular antagonist, Follistatin, as a likely cause of Mendelian forms of orofacial clefting in humans. Hum Mutat 40, 1813-1825 (2019).
Duchatelet, S. et al. Mutations in PERP Cause Dominant and Recessive Keratoderma. J Invest Dermatol 139, 380-390 (2019).
Aird, A. et al. Novel Heterozygous Mutation in Is Associated With Early Onset CVID and a Functional Defect in NK Cells Complicated by Disseminated CMV Infection and Severe Nephrotic Syndrome. Front Pediatr 7, 303 (2019).
Aird, A. et al. Novel Heterozygous Mutation in Is Associated With Early Onset CVID and a Functional Defect in NK Cells Complicated by Disseminated CMV Infection and Severe Nephrotic Syndrome. Front Pediatr 7, 303 (2019).
Aird, A. et al. Novel Heterozygous Mutation in Is Associated With Early Onset CVID and a Functional Defect in NK Cells Complicated by Disseminated CMV Infection and Severe Nephrotic Syndrome. Front Pediatr 7, 303 (2019).
Schulze, K. V. et al. Novel parent-of-origin-specific differentially methylated loci on chromosome 16. Clin Epigenetics 11, 60 (2019).
Qualls, A. E. et al. Novel SPEG mutations in congenital myopathies: Genotype-phenotype correlations. Muscle Nerve 59, 357-362 (2019).
Qualls, A. E. et al. Novel SPEG mutations in congenital myopathies: Genotype-phenotype correlations. Muscle Nerve 59, 357-362 (2019).
Gorcenco, S. et al. Oral therapy for riboflavin transporter deficiency - What is the regimen of choice?. Parkinsonism Relat Disord 61, 245-247 (2019).
Paine, I. et al. Paralog Studies Augment Gene Discovery: DDX and DHX Genes. Am J Hum Genet 105, 302-316 (2019).
Paine, I. et al. Paralog Studies Augment Gene Discovery: DDX and DHX Genes. Am J Hum Genet 105, 302-316 (2019).
Bryen, S. J. et al. Pathogenic Abnormal Splicing Due to Intronic Deletions that Induce Biophysical Space Constraint for Spliceosome Assembly. Am J Hum Genet 105, 573-587 (2019).
Bryen, S. J. et al. Pathogenic Abnormal Splicing Due to Intronic Deletions that Induce Biophysical Space Constraint for Spliceosome Assembly. Am J Hum Genet 105, 573-587 (2019).
Amor, D. J. et al. Pathogenic Variants in GPC4 Cause Keipert Syndrome. Am J Hum Genet 104, 914-924 (2019).
Atzmony, L., Zaki, T. D., Antaya, R. J. & Choate, K. A. Phenotypic expansion of POFUT1 loss of function mutations in a disorder featuring segmental dyspigmentation with eczematous and folliculo-centric lesions. Am J Med Genet A 179, 2469-2473 (2019).
Liu, P. et al. Reanalysis of Clinical Exome Sequencing Data. N Engl J Med 380, 2478-2480 (2019).
Liu, P. et al. Reanalysis of Clinical Exome Sequencing Data. N Engl J Med 380, 2478-2480 (2019).
Riley, L. G. et al. Recessive DES cardio/myopathy without myofibrillar aggregates: intronic splice variant silences one allele leaving only missense L190P-desmin. Eur J Hum Genet 27, 1267-1273 (2019).
Riley, L. G. et al. Recessive DES cardio/myopathy without myofibrillar aggregates: intronic splice variant silences one allele leaving only missense L190P-desmin. Eur J Hum Genet 27, 1267-1273 (2019).
Riley, L. G. et al. Recessive DES cardio/myopathy without myofibrillar aggregates: intronic splice variant silences one allele leaving only missense L190P-desmin. Eur J Hum Genet 27, 1267-1273 (2019).
Estañ, M. Cristina et al. Recessive mutations in muscle-specific isoforms of FXR1 cause congenital multi-minicore myopathy. Nat Commun 10, 797 (2019).
Estañ, M. Cristina et al. Recessive mutations in muscle-specific isoforms of FXR1 cause congenital multi-minicore myopathy. Nat Commun 10, 797 (2019).
Estañ, M. Cristina et al. Recessive mutations in muscle-specific isoforms of FXR1 cause congenital multi-minicore myopathy. Nat Commun 10, 797 (2019).
Bolduc, V. et al. A recurrent COL6A1 pseudoexon insertion causes muscular dystrophy and is effectively targeted by splice-correction therapies. JCI Insight 4, (2019).

Pages