Bi-allelic Variants in TONSL Cause SPONASTRIME Dysplasia and a Spectrum of Skeletal Dysplasia Phenotypes.

TitleBi-allelic Variants in TONSL Cause SPONASTRIME Dysplasia and a Spectrum of Skeletal Dysplasia Phenotypes.
Publication TypeJournal Article
Year of Publication2019
AuthorsBurrage, LC, Reynolds, JJ, Baratang, NVida, Phillips, JB, Wegner, J, McFarquhar, A, Higgs, MR, Christiansen, AE, Lanza, DG, Seavitt, JR, Jain, M, Li, X, Parry, DA, Raman, V, Chitayat, D, Chinn, IK, Bertuch, AA, Karaviti, L, Schlesinger, AE, Earl, D, Bamshad, M, Savarirayan, R, Doddapaneni, H, Muzny, D, Jhangiani, SN, Eng, CM, Gibbs, RA, Bi, W, Emrick, L, Rosenfeld, JA, Postlethwait, J, Westerfield, M, Dickinson, ME, Beaudet, AL, Ranza, E, Huber, C, Cormier-Daire, V, Shen, W, Mao, R, Heaney, JD, Orange, JS, Bertola, D, Yamamoto, GL, Baratela, WAR, Butler, MG, Ali, A, Adeli, M, Cohn, DH, Krakow, D, Jackson, AP, Lees, M, Offiah, AC, Carlston, CM, Carey, JC, Stewart, GS, Bacino, CA, Campeau, PM, Lee, B
Corporate AuthorsUniversity of Washington Center for Mendelian Genomics, Undiagnosed Diseases Network
JournalAm J Hum Genet
Volume104
Issue3
Pagination422-438
Date Published2019 03 07
ISSN1537-6605
Abstract

SPONASTRIME dysplasia is an autosomal-recessive spondyloepimetaphyseal dysplasia characterized by spine (spondylar) abnormalities, midface hypoplasia with a depressed nasal bridge, metaphyseal striations, and disproportionate short stature. Scoliosis, coxa vara, childhood cataracts, short dental roots, and hypogammaglobulinemia have also been reported in this disorder. Although an autosomal-recessive inheritance pattern has been hypothesized, pathogenic variants in a specific gene have not been discovered in individuals with SPONASTRIME dysplasia. Here, we identified bi-allelic variants in TONSL, which encodes the Tonsoku-like DNA repair protein, in nine subjects (from eight families) with SPONASTRIME dysplasia, and four subjects (from three families) with short stature of varied severity and spondylometaphyseal dysplasia with or without immunologic and hematologic abnormalities, but no definitive metaphyseal striations at diagnosis. The finding of early embryonic lethality in a Tonsl murine model and the discovery of reduced length, spinal abnormalities, reduced numbers of neutrophils, and early lethality in a tonsl zebrafish model both support the hypomorphic nature of the identified TONSL variants. Moreover, functional studies revealed increased amounts of spontaneous replication fork stalling and chromosomal aberrations, as well as fewer camptothecin (CPT)-induced RAD51 foci in subject-derived cell lines. Importantly, these cellular defects were rescued upon re-expression of wild-type (WT) TONSL; this rescue is consistent with the hypothesis that hypomorphic TONSL variants are pathogenic. Overall, our studies in humans, mice, zebrafish, and subject-derived cell lines confirm that pathogenic variants in TONSL impair DNA replication and homologous recombination-dependent repair processes, and they lead to a spectrum of skeletal dysplasia phenotypes with numerous extra-skeletal manifestations.

DOI10.1016/j.ajhg.2019.01.007
Alternate JournalAm. J. Hum. Genet.
PubMed ID30773277
PubMed Central IDPMC6408318
Grant ListU54 HG006493 / HG / NHGRI NIH HHS / United States
K08 DK106453 / DK / NIDDK NIH HHS / United States
R01 AI120989 / AI / NIAID NIH HHS / United States
T32 GM007526 / GM / NIGMS NIH HHS / United States
U54 HD083092 / HD / NICHD NIH HHS / United States
R01 OD011116 / OD / NIH HHS / United States
U01 HG007709 / HG / NHGRI NIH HHS / United States
U01 HG010218 / HG / NHGRI NIH HHS / United States
UM1 HG006348 / HG / NHGRI NIH HHS / United States
MC_PC_U127580972 / MR / Medical Research Council / United Kingdom
UM1 HG006493 / HG / NHGRI NIH HHS / United States
R01 AR066124 / AR / NIAMS NIH HHS / United States
U54 NS093793 / NS / NINDS NIH HHS / United States
R01 AR062651 / AR / NIAMS NIH HHS / United States
/ CA / CIHR / Canada
C17183/A23303 / CR / Cancer Research UK / United Kingdom
MR/P009085/1 / MR / Medical Research Council / United Kingdom