Publications

Export 912 results:
Author [ Title(Desc)] Year
Filters: First Letter Of Last Name is W  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
F
Gee, H. Yung et al. FAT1 mutations cause a glomerulotubular nephropathy. Nat Commun 7, 10822 (2016).
Gee, H. Yung et al. FAT1 mutations cause a glomerulotubular nephropathy. Nat Commun 7, 10822 (2016).
Beck, T. F. et al. FBN1 contributing to familial congenital diaphragmatic hernia. Am J Med Genet A 167A, 831-6 (2015).
Pedroza, L. Alberto et al. First Case of Deficiency in Ecuador, Diagnosed after Whole Exome Sequencing in a Patient with Severe Cutaneous Histoplasmosis. Front Pediatr 5, 17 (2017).
Xavier, C. et al. Forensic evaluation of the Asia Pacific ancestry-informative MAPlex assay. Forensic Sci Int Genet 48, 102344 (2020).
Hwang, J. L. et al. FOXP3 mutations causing early-onset insulin-requiring diabetes but without other features of immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome. Pediatr Diabetes 19, 388-392 (2018).
Gonzaga-Jauregui, C. et al. Functional biology of the Steel syndrome founder allele and evidence for clan genomics derivation of COL27A1 pathogenic alleles worldwide. Eur J Hum Genet 28, 1243-1264 (2020).
Gonzaga-Jauregui, C. et al. Functional biology of the Steel syndrome founder allele and evidence for clan genomics derivation of COL27A1 pathogenic alleles worldwide. Eur J Hum Genet 28, 1243-1264 (2020).
Gonzaga-Jauregui, C. et al. Functional biology of the Steel syndrome founder allele and evidence for clan genomics derivation of COL27A1 pathogenic alleles worldwide. Eur J Hum Genet 28, 1243-1264 (2020).
Martinelli, S. et al. Functional Dysregulation of CDC42 Causes Diverse Developmental Phenotypes. Am J Hum Genet 102, 309-320 (2018).
Zhang, L. Xin et al. Further delineation of the clinical spectrum of KAT6B disorders and allelic series of pathogenic variants. Genet Med 22, 1338-1347 (2020).
Hildebrandt, C. C. et al. Further delineation of van den Ende-Gupta syndrome: Genetic heterogeneity and overlap with congenital heart defects and skeletal malformations syndrome. Am J Med Genet A (2021). doi:10.1002/ajmg.a.62194
Santos-Cortez, R. Lyn P. et al. FUT2 Variants Confer Susceptibility to Familial Otitis Media. Am J Hum Genet 103, 679-690 (2018).
G
Absalom, N. L. et al. Gain-of-function variants identified in vigabatrin-hypersensitive epileptic encephalopathies. Brain Commun 2, fcaa162 (2020).
Cowan, J. R. et al. Gain-of-Function Variants in Dilated Cardiomyopathy. Circ Genom Precis Med 13, e002892 (2020).
Qiao, D. et al. Gene-based segregation method for identifying rare variants in family-based sequencing studies. Genet Epidemiol 41, 309-319 (2017).
Kircher, M. et al. A general framework for estimating the relative pathogenicity of human genetic variants. Nat Genet 46, 310-5 (2014).
Klämbt, V. et al. Generation of Monogenic Candidate Genes for Human Nephrotic Syndrome Using 3 Independent Approaches. Kidney Int Rep 6, 460-471 (2021).
Li, B., Wang, G. T. & Leal, S. M. Generation of sequence-based data for pedigree-segregating Mendelian or Complex traits. Bioinformatics 31, 3706-8 (2015).
Karaca, E. et al. Genes that Affect Brain Structure and Function Identified by Rare Variant Analyses of Mendelian Neurologic Disease. Neuron 88, 499-513 (2015).
Moccia, A. et al. Genetic analysis of CHARGE syndrome identifies overlapping molecular biology. Genet Med 20, 1022-1029 (2018).
Siggs, O. M. et al. The genetic and clinical landscape of nanophthalmos and posterior microphthalmos in an Australian cohort. Clin Genet 97, 764-769 (2020).
Lin, M. et al. Genetic and molecular mechanism for distinct clinical phenotypes conveyed by allelic truncating mutations implicated in FBN1. Mol Genet Genomic Med 8, e1023 (2020).
Lin, M. et al. Genetic and molecular mechanism for distinct clinical phenotypes conveyed by allelic truncating mutations implicated in FBN1. Mol Genet Genomic Med 8, e1023 (2020).
Lin, M. et al. Genetic and molecular mechanism for distinct clinical phenotypes conveyed by allelic truncating mutations implicated in FBN1. Mol Genet Genomic Med 8, e1023 (2020).
Lin, M. et al. Genetic and molecular mechanism for distinct clinical phenotypes conveyed by allelic truncating mutations implicated in FBN1. Mol Genet Genomic Med 8, e1023 (2020).
Kasela, S. et al. Genetic and non-genetic factors affecting the expression of COVID-19-relevant genes in the large airway epithelium. Genome Med 13, 66 (2021).
Kasela, S. et al. Genetic and non-genetic factors affecting the expression of COVID-19-relevant genes in the large airway epithelium. Genome Med 13, 66 (2021).
Li, A. H. et al. Genetic architecture of laterality defects revealed by whole exome sequencing. Eur J Hum Genet 27, 563-573 (2019).
Campeau, P. M. et al. The genetic basis of DOORS syndrome: an exome-sequencing study. Lancet Neurol 13, 44-58 (2014).
Campeau, P. M. et al. The genetic basis of DOORS syndrome: an exome-sequencing study. Lancet Neurol 13, 44-58 (2014).
Campeau, P. M. et al. The genetic basis of DOORS syndrome: an exome-sequencing study. Lancet Neurol 13, 44-58 (2014).
Chong, J. X. et al. The Genetic Basis of Mendelian Phenotypes: Discoveries, Challenges, and Opportunities. Am J Hum Genet 97, 199-215 (2015).
Chong, J. X. et al. The Genetic Basis of Mendelian Phenotypes: Discoveries, Challenges, and Opportunities. Am J Hum Genet 97, 199-215 (2015).
Chong, J. X. et al. The Genetic Basis of Mendelian Phenotypes: Discoveries, Challenges, and Opportunities. Am J Hum Genet 97, 199-215 (2015).
Peter, B. et al. Genetic Candidate Variants in Two Multigenerational Families with Childhood Apraxia of Speech. PLoS One 11, e0153864 (2016).
Peter, B. et al. Genetic Candidate Variants in Two Multigenerational Families with Childhood Apraxia of Speech. PLoS One 11, e0153864 (2016).
Wojcik, M. H., Reimers, R., Poorvu, T. & Agrawal, P. B. Genetic diagnosis in the fetus. J Perinatol 40, 997-1006 (2020).
Lopez-Rivera, E. et al. Genetic Drivers of Kidney Defects in the DiGeorge Syndrome. N Engl J Med 376, 742-754 (2017).
Lopez-Rivera, E. et al. Genetic Drivers of Kidney Defects in the DiGeorge Syndrome. N Engl J Med 376, 742-754 (2017).
Lopez-Rivera, E. et al. Genetic Drivers of Kidney Defects in the DiGeorge Syndrome. N Engl J Med 376, 742-754 (2017).
Lopez-Rivera, E. et al. Genetic Drivers of Kidney Defects in the DiGeorge Syndrome. N Engl J Med 376, 742-754 (2017).
Ott, J., Wang, J. & Leal, S. M. Genetic linkage analysis in the age of whole-genome sequencing. Nat Rev Genet 16, 275-84 (2015).
Dron, J. S. et al. Genetic Predictor to Identify Individuals With High Lipoprotein(a) Concentrations. Circ Genom Precis Med 14, e003182 (2021).
Wei, C. - Y. et al. Genetic profiles of 103,106 individuals in the Taiwan Biobank provide insights into the health and history of Han Chinese. NPJ Genom Med 6, 10 (2021).
Wei, C. - Y. et al. Genetic profiles of 103,106 individuals in the Taiwan Biobank provide insights into the health and history of Han Chinese. NPJ Genom Med 6, 10 (2021).
Wei, C. - Y. et al. Genetic profiles of 103,106 individuals in the Taiwan Biobank provide insights into the health and history of Han Chinese. NPJ Genom Med 6, 10 (2021).
Mohammadi, P. et al. Genetic regulatory variation in populations informs transcriptome analysis in rare disease. Science 366, 351-356 (2019).
Bramswig, N. C. et al. Genetic variants in components of the NALCN-UNC80-UNC79 ion channel complex cause a broad clinical phenotype (NALCN channelopathies). Hum Genet 137, 753-768 (2018).
Bramswig, N. C. et al. Genetic variants in components of the NALCN-UNC80-UNC79 ion channel complex cause a broad clinical phenotype (NALCN channelopathies). Hum Genet 137, 753-768 (2018).

Pages